Extensions 1→N→G→Q→1 with N=C32×A4 and Q=C3

Direct product G=N×Q with N=C32×A4 and Q=C3
dρLabelID
A4×C33108A4xC3^3324,171

Semidirect products G=N:Q with N=C32×A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×A4)⋊1C3 = He32A4φ: C3/C1C3 ⊆ Out C32×A4369(C3^2xA4):1C3324,55
(C32×A4)⋊2C3 = C62.6C32φ: C3/C1C3 ⊆ Out C32×A4369(C3^2xA4):2C3324,58
(C32×A4)⋊3C3 = A4×He3φ: C3/C1C3 ⊆ Out C32×A4369(C3^2xA4):3C3324,130
(C32×A4)⋊4C3 = C3×C32⋊A4φ: C3/C1C3 ⊆ Out C32×A454(C3^2xA4):4C3324,135

Non-split extensions G=N.Q with N=C32×A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C32×A4).1C3 = C62.16C32φ: C3/C1C3 ⊆ Out C32×A4108(C3^2xA4).1C3324,52
(C32×A4).2C3 = C3×C9⋊A4φ: C3/C1C3 ⊆ Out C32×A4108(C3^2xA4).2C3324,127
(C32×A4).3C3 = A4×3- 1+2φ: C3/C1C3 ⊆ Out C32×A4369(C3^2xA4).3C3324,131
(C32×A4).4C3 = A4×C3×C9φ: trivial image108(C3^2xA4).4C3324,126

׿
×
𝔽